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Steroid Hormones and Brain Development:
Some Guidelines for Understanding Actions
of Pseudohormones and Other Toxic
Agents
by Bruce S. McEwen*

Gonadal, adrenal, and thyroid hormones affect the brain directly, and the sensitivity to hormones begins
in embryonic life with the appearance ofhormone receptor sites in discrete populations of neurons. Because
the secretion of hormones is also under control by its neural and pituitary targets, the brain-endocrine
axis during development is in a delicately balanced state that can be upset in various ways, and any agent
that disrupts normal hormone secretion can upset normal brain development. Moreover, exogenous sub-
stances that mimic the actions of natural hormones can also play havoc with CNS development and
differentiation.
This paper addresses these issues in the following order: First, actions of glucocorticoids on the devel-

oping nervous system related to cell division dendritic growth and neurotransmitter phenotype will be
presented followed by a discussion of the developmental effects of synthetic steroids. Second, actions of
estrogens related to brain sexual differentiation will be described, followed by a discussion of the actions
of the nonsteroidal estrogen, diethylstilbestrol, as an example of exogenous estrogenic substances. The
most important aspect of the potency of exogenous estrogens appears to be the degree to which they either
bypass protective mechanisms or are subject to transformations to more active metabolites. Third, agents
that influence hormone levels or otherwise modify the neuroendocrine system, such as nicotine, barbi-
turates, alcohol, opiates, and tetrahydrocannabinol, will be noted briefly to demonstrate the diversity of
toxic agents that can influence neural development and affect personality, cognitive ability, and other
aspects of behavior.
Because of the growth of neuroscience as a discipline and the increasing recognition of pervasive

influences of hormones on brain development and adult brain function, many opportunities exist for
expanding our knowledge regarding the actions of environmental toxicants.

Introduction
The brain is a target organ for the actions ofhormones

secreted by the gonads, adrenals, and thyroid gland,
and this sensitivity to hormones begins in embryonic
life with the appearance of hormone receptor sites in
discrete populations of neurons. Because the secretion
of hormones is also under control by its neural and pi-
tuitary targets, the brain-endocrine axis during devel-
opment is in a delicately balanced state that can be upset
in various ways. Thus, any agent that disrupts normal
hormone secretion can upset normal brain development.
Likewise, exogenous substances that mimic the actions
of natural hormones can also play havoc with CNS de-
velopment and differentiation. This article will examine
both types of effects, but we shall place special emphasis
on the actions of synthetic or natural substances that
mimic actions of natural hormones. However, let us first
consider the hormone receptors.
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Hormone Receptors in Brain
The brain responds to all six classes of steroid hor-

mones (androgens, estrogens, progestins, glucocorti-
coids, mineralocorticoids, and vitamin D) and contains
receptors for them, as well as for thyroid hormone (1).
All of these hormone receptors are proteins that contain
a hormone-recognizing domain and a domain that binds
to specific DNA sequences (2). Thus, these receptors
exert their effects by binding to specific enhancerlike
elements of the genome and modulating (increasing or
decreasing) gene expression. Because most of these re-
ceptors begin to be expressed in neurons during em-
bryonic life, their presence allows hormones or other
molecules that mimic hormone actions (pseudohor-
mones) to affect brain development. Generally speak-
ing, such effects involve induced growth or inhibition
of growth of selected groups of neurons, as well as pro-
motion of differentiation of neurotransmitter phenotype
or regulatory phenotype (3).
The brain does not remain responsive in the same
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way after the period of early development is finished.
Instead, when neuronal number is stabilized and syn-
apses are laid, the same hormonal signals are able to
cause other effects. These effects include reversible
modulation of morphology and neurochemistry, which
accompany the reversible modulation by these hor-
mones of neuroendocrine function and behavior. How-
ever, when brain damage occurs, developmental pro-
grams are reactivated to a limited degree, and hormones
once again acquire the ability to influence neuronal
growth and synapse formation. What determines which
hormone effects will occur at a particular developmental
stage? It is unlikely that the hormone receptors change;
rather, changes at the genomic level are more probable,
alterations that determine which genes are turned on
or off by the hormone-receptor complex. Let us now
examine specific hormone systems.

Glucocorticoids, Neural Receptors
and Developmental Abnormalities
Glucocorticoid Receptors in Neural Tissue

Glucocorticoid receptors are present in fetal brain tis-
sue (4) and are implicated in a variety ofperinatal effects
of exogenous and endogenous hormone. Figure 1 shows
Scatchard analysis profiles of embryonic rat forebrain
tissue at various ages, demonstrating an apparent de-
crease in binding capacity from fetal day 16 to birth,
after which a postnatal increase in binding takes place
(4). Glucocorticoid administration to rats at birth delays
eye opening (5), inhibits dendritic development (6) and
myelination (7), and delays appearance of pituitary-ad-
renal rhythmicity (8-10). Reduced brain size and cell
number are also reported to result from perinatal glu-
cocorticoid administration (11), and this may be a con-
sequence of glucocorticoid-inhibition of cell division (12-
13).

Glucocorticoids also promote development of the ad-
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FIGURE 1. Representative Scatchard plots based on saturation ex-
periments with fetal (F16, F19, F22) and postnatal (P1.5) pups
using [3H]DEX. Binding capacities (fmole/mg protein) and dis-
sociation constants (Kd in nM) are as follows: F16-111, 4.8; F19-
65, 3.6; F22-72, 5.6; P1.5-61, 3.5. Reproduced by permission (4).

renergic phenotype in neurons ofthe autonomic nervous
system (14), and they are required for normal matur-
ation of the brain serotonin system (15). In the rat, the
first postnatal 2 weeks is a stress nonresponsive period
that is characterized by reduced corticosterone secre-
tion in response to stress. It is during this time that
glucocorticoid administration produces the deleterious
effects noted above. Also during this time, handling of
newborn rat pups will cause developmental changes that
result in greater exploratory activity and less fear in
adult life, accompanied by an increased glucocorticoid
receptor capacity in the hippocampus (16,17). This in-
creased capacity to respond to glucocorticoids, which
appears to be developmentaliy mediated by increased
thyroid hormone output, results in a greater capacity
of the adult animal to shut off stress-induced glucocor-
ticoid secretion (16-18). Thus, neonatally handled rats
are better adapted to cope with stress, and there is
initial evidence that such animals may age more slowly
(Meaney, personal communication). Let us now examine
some glucocorticoidlike actions of pseudohormones.

Synthetic Progestins-Androgenic and
Glucocorticoid Effects

Synthetic progestational steroids were administered
to pregnant women to prevent miscarriages or were
given in the course of pregnancy testing, or were in-
gested as oral contraceptives after fertilization had oc-
curred. The unanticipated and deleterious side-effects
of their administration appear to be due to the ability
of these steroids to act as pseudohormones. Specifically,
they appear to act as androgens and there are indica-
tions that they act as glucocorticoids. Virilizing, andro-
genlike effects of synthetic progestins were noted on
genital appearance (19), and the effects were subse-
quently extended to include psychosexual identity (20),
other aspects of personality (21), and potential for
aggression (22). Less well known and not as thoroughly
studied are influences of synthetic progestins leading to
mental retardation, craniofacial abnormalities, and
growth retardation (23). Although the mechanism of
action for these effects is not known, one possibility is
that some of the synthetic progestins mimic glucocor-
ticoids and may be acting as pseudoglucocorticoids to
produce these abnormalities. One ofthe most prominent
of these steroids, Provera, is a synthetic progestational
steroid, which is also a potent glucocorticoid (24,25).
Glucocorticoids are known to cause cranial malforma-
tions (e.g., cleft palate) (25,26) and to retard neural
growth and development. Additional studies are called
for in order to explore this aspect of synthetic progestin
action, especialiy in view of the extensive use of syn-
thetic progestins in obstetric and gynecological practice.
Dexamethasone. Another potential toxin is the syn-

thetic glucocorticoid dexamethasone (DEX) (27). When
given to rhesus monkey fetuses in utero, it causes large-
scale destruction of neurons in the hippocampal for-
mation (28). What is not clear is the extent to which
systemically administered DEX, given to the mother,
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will cause similar defects in the fetus. Studies on human
pregnancy indicate that DEX given to the mother does
not effectively suppress pituitary-adrenal activity in the
fetus (29). Therefore, it may not effectively cross the
placenta in the human, even though maternally admin-
istered DEX has been reported to have some effect on
the fetus, i.e., to reduce respiratory distress syndrome
in subsequent premature offspring (30). What appears
to be at issue is the existence of an effective mechanism
whereby fetal levels of DEX are kept under control.
The rat is another species in which maternally admin-
istered glucocorticoids are less teratogenic than in other
species (27). The rat shows limited fetal responses to
maternally administered DEX (31), including cleft-pal-
ate syndrome (27), although DEX is apparently actively
transferred from the fetus to the mother and kept at a
low level (32). Thus, it would appear that teratogenic
effects of DEX are possible in human as well as in rat
fetuses, although there appears to be an efficient pro-
tection mechanism in the fetal-placental unit which re-
duces the potency of maternally administered steroids.
It remains to be established how effective similar mech-
anisms are with respect to synthetic progestins such as
Provera.

Actions of Estrogens and
Pseudoestrogens on Brain
Development and Psychosexual
Differentiation
Estrogens are potent agents with respect to brain

development. A key element in understanding their po-
tentially teratogenic effects is appreciating not only how
they affect normal brain development but also how the
fetus is protected from estrogen action. Estrogen re-
ceptors (ER) develop during fetal life in brains of both
males and females, as shown in experiments carried out
on the mouse (Fig. 2) and rat (Fig. 3). Once they have
appeared, neural ER are occupied in males, but appar-
ently not in females, by estradiol derived from the local
conversion of testosterone to estradiol via aromatizing
enzymes (33,34). The testosterone is secreted during a
perinatal period of testicular activity. Aromatizing en-
zymes are present in high levels in fetal hypothalamus
and limbic brain (35). Differential occupancy of ER in
males leads to differential effects on neural development
and differentiation. These actions include effects on
growth of neurites (36) that lead to morphological (37)
and biochemical (34) sex differences. In this way, some
of the masculinizing and defeminizing actions of testos-
terone on brain development are produced. Other ac-
tions of testosterone on sexual differentiation of the
brain are mediated by androgen receptors that, like
estrogen receptors, are also expressed equally in male
and female brains but are differentially occupied in
males because of the testicular secretion of testosterone
during perinatal development (33,34,38). Paradoxically,
these actions of testosterone can be inhibited by estro-
gens because of their ability to inhibit the secretion of

gonadotropins which stimulate testosterone secretion
by the testes (39).

Cerebral Cortex
One developmental effect of estrogens has potentially

great implications for cognitive performance. Estrogen
receptors are expressed transiently in the developing
cerebral cortex in male and female rodents (Fig. 4)
(33,40). Progestin receptors are also produced in over-
abundance during the perinatal period (Fig. 4).
Strangely, estrogen receptor content is higher in the
right cortex of the female and in the left cortex of the
male on postnatal days 2 to 3; structurally, ovariectomy
reverses the normally greater thickness of the left cor-
tex as compared to the right, leading to the supposition
that estradiol normally inhibits growth of the cortex
(41). It should be noted that growth inhibition in cortex
by estradiol is an effect that is opposite to that noted
for estradiol in the hypothalamus and preoptic area (36).
This is a paradox that must be resolved by further re-
search. In males, castration reduces brain weight and
partially reverses the greater thickness of the right cor-
tex as compared to the left (41), indicating that testos-
terone secretion also has a developmental influence on
the cortex. One possibility is that testosterone exerts
this effect via aromatization to estradiol, and some evi-
dence that cortex has aromatizing capability has re-
cently been produced by MacLusky and colleagues in
New Haven (42). In the developing rhesus monkey
brain, ER, as well as androgen receptors, are found in
cerebral cortex, as well as in hypothalamus and limbic
brain (42,43).

Psychosexual Differentiation- and DES
Further insight into actions of estrogens on brain de-

velopment has come from studies of offspring ofmothers
exposed to the pseudoestrogen diethylstilbestrol (DES)
during pregnancy (44-46). In studies thus far completed
and published, prenatal DES alters general measures
of personality and leads to altered patterns of sexual
behavior in adolescence and adulthood that reduce for-
mation of heterosexual relationships (44). These differ-
ences from carefully matched normal subjects could not
be explained by sexual dysfunctions such as vaginismus
and dyspareunia, which were low in both groups, but
rather appear to be due to psychosocial and neuroen-
docrine factors related to DES exposure (44).
DES is also reported to have a paradoxical masculin-

izing effect in some human infants exposed to this agent
alone during gestation (47). A similar observation was
made by Greene et al. (39) on rats. The explanation for
this action is obscure: DES is not an androgen, although
some DES-exposed women show elevated testosterone
levels as adults and thus may be responding to DES
with abnormal androgen production (44).

Protective Mechanisms
Since the developing brains of both sexes are highly

sensitive to gonadal hormones, what mechanisms guar-
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increase markedly around fetal day 15. Binding to estrogen receptors, corrected for nuclear DNA (A), increased with age; total radioactivity
in serum remained level (D), as both cell nuclear DNA content (B) and fetal body weight (C) rose. Reproduced by permission (40).
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antee that fetuses will not be affected by circulating
estrogens and androgens in the mother? One mechanism
which has received considerable attention in rodents is
the serum binding protein a-fetoprotein (AFP), which
binds estradiol in rats and mice (48). Because AFP does
not bind synthetic estrogens such as DES, DES is much
more potent in altering brain sexual differentiation than
estradiol (48). Where is the protective action of AFP
most important, during fetal life or in the postnatal
period? Because the critical or sensitive period for ef-
fects of testosterone on sexual differentiation mediated
by estradiol is postnatal in the rat and mouse, it seems
most likely that AFP is most important postnatally
when estradiol in the mother's milk might otherwise
lead to defeminization and sterility in the female. Why
do other species such as the guinea pig and human lack
an AFP with estradiol binding capability? A possible
explanation is that the defeminizing actions of testos-
terone mediated by estradiol take place in utero in these
species; hence, the estrogen binding domain ofAFP may
have been lost during the course of evolution of these
species because it serves no useful protective role post-
natally.
Whether or not this explanation is valid, the fetal-

placental unit must be examined very carefully for the
protection it affords, because it must be important in
the human in the absence of estrogen binding AFP. As
is the case for dexamethasone, the placenta-fetal unit
acts to control the level of estradiol. It does so by se-
lectively secreting estradiol toward the maternal cir-
culation (49). In addition, the conversion of estradiol to
the less potent estrone is an important factor, and the
fetus has substantially higher levels of estrone relative
to estradiol than the mother (49,50). In contrast to es-
tradiol, the synthetic estrogen DES is passed to the
fetus in unchanged form, where it can act potently as
an estrogen; the oxidoreductase that converts estradiol
to estrone is ineffective on DES, and fetal conjugation
of DES to a sulfate ester is not an especially effective
removal mechanism (50). Thus, the fetal-placental ina-
bility to deal effectively with synthetic estrogens such
as DES is analogous to the inability of AFP to bind
DES; in both cases, DES has preferential access to fetal
estrogen receptor sites because it bypasses the mech-
anism that operates to retard estradiol. What are the
implications of this state of affairs for the estrogens in
the environment?

Environmental Pseudoestrogens
Many substances in the environment have estrogenic

properties, including certain natural products of plants,
a number of insecticides, and the stilbene derivatives,
of which DES is an example (Table 1). A common fea-
ture of all of these estrogens is a phenolic ring that fits
into the proteinaceous estrogen receptor. Although the
absolute potency of these estrogens depends on the rest
of the molecule, especially on the presence of another
hydroxyl group some distance away, the primary phe-
nolic hydroxyl group in a great variety of molecules is
able to promote estrogen receptor activation (51). What
can be said about protection of the fetus from such sub-
stances? For DES, the lack of an oxidizable hydroxyl
group is apparently one of the factors that renders it
insensitive to the fetal-placental barrier described
above. Other natural and synthetic estrogenic sub-
stances in Table 1 appear to share this property. There-
fore, to the extent that they may reach the fetus in
sufficient amounts to react with estrogen receptors, the
ability of the placental-fetal unit to reduce their potency

Table 1. Examples of substances in the environment that have
estrogenic activity.

Class of substance Specific example
Plant estrogens Isoflavones (daidzein)

Coumestans (coumestrol)
Resorcylic acid lactones

(zearalenone)
Insecticides Kepone

Methoxychlor
DDT

Synthetic pseudoestrogens Diethylstilbestrol
Indenestrol

Based on McLachlan (51).

A. Estrogen receptors
in rat cortex
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is questionable. However, we must admit our lack of
definitive information, because there are no studies to
date of most of these substances with respect to pen-
etration from the mother into the fetus.

Indirect Influences of Other
Environmental Toxic Agents on
Neuroendocrine Function
This brief survey would be incomplete without ac-

knowledging the potentially important effects of other
substances in the environment that can alter endocrine
function, though they do not act as pseudohormones.
What these substances do is act on neurons that are
involved in controlling hormone output via the hypo-
thalamic-pituitary axis. Through this axis, output of
gonadal and adrenal steroids and thyroid hormone can
be altered. In addition, at least some of the pituitary
hormones like MSH can have long-term developmental
effects on the brain (52).
Among the substances that are able to influence gon-

adal function during development are nicotine, neuro-
leptics, barbiturates, amphetamines, tetrahydrocan-
nabinol (THC), opiates, and alcohol (52). In particular,
nicotine, phenobarbital, THC, morphine, and alcohol all
are reported to reduce serum levels of testosterone in
developing male fetuses and therefore can reduce the
masculinization and defeminization of those affected in-
dividuals (52).

Conclusions
This brief survey summarizes some of the growing

body of evidence that the developing brain is an im-
portant target organ for the action of steroid hormones.
Neural sensitivity to adrenal and gonadal hormones be-
gins during embryonic life, and during the period of
early development the nervous system responds to hor-
mones by altering cell proliferation, neuronal growth,
and differentiation. These effects are produced via re-
ceptor sites that are expressed in neural cells during
early development that activate the genome to increase
or decrease expression of specific gene products.
The normal effects of steroid hormones on brain

growth and differentiation are just now coming under
intensive investigation, and the full range of their im-
pact remains to be fully appreciated. For example, we
are just beginning to be aware of the effects of gonadal
steroids on cerebral cortical development. These effects
may be particularly important during the early post-
natal period in the human infant when lateralization of
hemispheric function is being established and language
ability, as well as spatial ability, is being determined.
In addition, it is increasingly apparent that gonadal ste-
roid may play an influential role in neural development
in the female (36,41), even though the traditional dogma
is that gonadal steroid effects are exerted more or less
exclusively during development in the male to produce
brain sexual differentiation.

From the standpoint of environmental toxins, one im-
portant lesson of this new information about hormones
and brain development is that one must not take for
granted the protection afforded the fetus by the fetal
environment or the inaccessibility of the developing
brain from the rest of the fetal and maternal environ-
ment. As exemplified in studies of exposure to DES in
utero, important behavioral effects of exogenous pseu-
dohormones do occur, and they are amenable to inves-
tigation by rigorous psychological testing procedures.
The psychological data for DES exposure must now be
supplemented by neurological testing by means of non-
invasive techniques in order to provide a more concrete
organic basis for understanding what DES has done to
the brain during development. At the same time, it is
imperative that studies be undertaken to determine the
ability of other pseudohormones found in the environ-
ment to bypass placental protection mechanisms, as is
the case for DES, and to gain access to the fetus in
amounts that may cause abnormal neural development.
It is not clear which of the substances listed in Table 1
may be metabolized by the mother, placenta, or fetus
in such a way as to render them less dangerous and
which agents in Table 1 lie outside of this protective
capability.

Finally, confining attention just to pseudohormones
would be a mistake. Many commonly used substances,
including alcohol, marijuana, tobacco, and barbiturates
alter hormone secretion in fetuses and neonates as well
as in adults (52). We now appreciate that any distur-
bance in hormone secretion can contribute to an alter-
ation in neural development. At the very least, such
disturbances in development will contribute to individ-
ual variability in personality and behavior; at the worst,
such developmental alterations may increase the sus-
ceptibility to nervous and mental diseases later in life.
It is conceivable that changing patterns of drug use and
other exposure to behavioral teratogens in the environ-
ment may alter frequencies of diseases such as depres-
sive illness and anorexia nervosa. This theoretical pos-
sibility should be given some consideration in examining
the frequency and sex distribution of such nervous and
mental disorders.
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the Rockefeller Foundation for research in reproductive biology is
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